ОЦЕНИВАНИЕ СЛОЖНОСТИ ХАОТИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В АСПЕКТЕ ФОРМЫ ИХ ТРАЕКТОРИЙ

А.В. Макаренко

Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная ул., 65 E-mail: <u>avm.science@mail.ru</u>

Ключевые слова: хаотическая динамика, сложность, форма траектории, символический CTQ-анализ

Аннотация: Изложен новый подход к количественному оцениванию сложности многомерных дискретных последовательностей в аспекте форм их траекторий в расширенном пространстве состояний, основанный на исследовании их структурных свойств. Метод пригоден для оценивания сложности как хаотических, так и стохастических последовательностей. Метод построен на ранее предложенном автором символическом CTQ-анализе многомерных дискретных последовательностей и отображений. Метод позволяет обнаруживать факт и измерять характеристики перестройки структуры аттракторов. Проведённое численное исследование осциллятора Рёсслера в двух режимах (ленточный и винтовой хаос) показало полное соответствие полученных результатов выводам теоретического анализа, сделанного ранее. Дополнительный пример (финансовые временные ряды) демонстрирует прикладной аспект применения разработанного инструментария.

1. Введение

Понятие «сложность» какого либо объекта является его важнейшей структурноинформационной характеристикой, и относится к числу фундаментальных научных понятий [1,2]. Не является исключением и более узкое понятие «сложность динамического процесса». С ней увязывают предсказуемость и информационную ёмкость процессов [3]. Она входит в состав критериев классифицирующих процессы как детерминированные, хаотические, стохастические [4]. Однако, наряду с этим, вопросы определения и вычисления сложности динамических процессов остаются методологически открытыми [2].

Впервые количественный подход к понятию «сложность» был сформулирован в статистической физике равновесных систем в 1877 году с введением Людвигом Больцманом понятия «энтропия» [5]: $H = k_B \ln W$, где: W – число микросостояний системы, реализация которых возможна в имеющемся макроскопическом состоянии; k_B – постоянная Больцмана. Р. Хартли фактически распространил положения статистической физики на описание состояний макросистем и придал энтропии информационный смысл [6]. Дальнейшее развитие эта идея получила в работах К. Шеннона по теории информации [7], в которых для $p(x_i)$ – вероятностных распределений независимых случайных событий x_i было также введено понятие энтропии:

(1)
$$H = -\sum_{i} p(x_i) \ln p(x_i)$$

Обобщение энтропии Шеннона на случай динамических систем было проведено А.Н. Колмогоровым и Я.Г. Синаем в созданной ими энтропийной теории динамических систем [8].

Развитие нелинейной динамики, теории хаотических динамических систем, теории неравновесных систем, потребовало введения соответствующих характеристик, таких как показатели Ляпунова, энтропия Колмогорова, S-параметр Климонтовича [9,10]. Примечательно, что эти параметры по своей сути также связаны с энтропией Шеннона.

Тем не менее, все широко распространённые модификации энтропийной меры Больцмана-Шеннона обладают особенностями, ограничивающими их применимость [11]. В дополнение к энтропии Больцмана-Шеннона были предложены формализмы Реньи и Тсалисса [11].

В начале 80-х годов XX века А.Н. Колмогоров предложил принципиально новый, алгоритмический подход к интерпретации понятия «сложность» [12]. Критерий был формализован на языке теории алгоритмов и для него была построена соответствующая мера, которая обладает неоспоримыми информационными достоинствами. Но применять её для оценивания сложности динамических процессов весьма затруднительно, так как она весьма трудоёмка для вычисления и интерпретации результатов.

В работе [13] предложен оригинальный подход к исчислению сложности скалярного динамического процесса основанный на идее информационных затрат, требующихся для аппроксимации процесса с требуемой точностью. Подход идейно близок к алгоритмическому подходу А.Н. Колмогорова. Его ограничением является условность и необоснованность выбора того или иного аппроксимирующего базиса.

В радиофизике активно применяется частотно-временной критерий сложности [14]. Мерой является произведение ширины спектра на длительность динамического процесса:

(2)
$$\Delta t \Delta \omega = 4 \left[\int_{-\infty}^{+\infty} t^2 x^2(t) dt \int_{-\infty}^{+\infty} \omega^2 |S(\omega)|^2 d\omega \right]^{1/2}, \quad S(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} x(t) e^{-i\omega t} dt.$$

Критерий не учитывает форму спектра, оперирует эффективными значениями ширины спектра и длительности динамического процесса, что делает оценку сложности несколько условной. Более того, мера (2) накладывает ограничения на минимальную скорость убывания функций x(t) и $|S(\omega)|$, и имеет скорее энергетический, нежели информационный смысл.

Недавно В.И. Арнольд [15] предложил подход к вычислению сложности решётчатых последовательностей вида $\mathbb{Z}_2 \times \mathbb{Z}$ (последовательности 0 и 1). Метод базируется на формализации структуры последовательностей – для них строится отображение в себя (через циклическую разность), после чего это отображение представляется в виде графа, по характеристикам которого определяется сложность исходной последовательности. Сильным ограничением этого метода является невозможность переноса созданной меры сложности на $\mathbb{R}^N \times \mathbb{Z}$ -континуальные процессы. Стоит также отметить так называемую периметрическую сложность для оценивания сложности двумерных изображений [16]. В данном случае изображение возможно трактовать как двумерное скалярное поле. Сильнейшее ограничение метода – применимость только к бинарным изображениям (класс $\mathbb{Z}_2 \times \mathbb{Z}^2$).

В настоящей работе предложен иной подход к анализу сложности хаотических последовательностей – через исследование их структурных свойств в аспекте форм их траекторий. Данный подход свободен от большинства недостатков подходов приведённых выше и основывается на методе символического СТQ-анализа [17]. Этот метод символического анализа является вычислительно ориентированным и направлен на исследование многомерных дискретных последовательностей и отображений. Формализм СTQ-анализа изучает свойства динамических систем, важные с позиций вопросов идентификации, управления и предсказания их эволюции.

Кроме того, подход позволяет анализировать уровень синхронизации и её временную структуру в сложных ансамблях сильно нестационарных и неидентичных хаотических осцилляторов больших размерностей с произвольной конфигурацией и топологией сети (решётки) [18].

Данная работа является продолжением исследования, впервые представленного автором на XXV IUPAP Conference on Computational Physics [19]. Все вычисления и визуализация выполнены в программе Wolfram Mathematica 9.

2. Символический СТQ-анализ

Определим дискретную динамическую систему в виде отображения:

(3)
$$\mathbf{s}_{k+1} = \mathbf{f}(\mathbf{s}_k, \mathbf{p}),$$

со свойствами:

$$\mathbf{s} \in \mathbf{S} \subset \mathbb{R}^N, \quad k \in \mathbf{K} \subset \mathbb{N}, \quad \mathbf{p} \in \mathbf{P} \subset \mathbb{R}^M, \quad n = \overline{1, N}, \ k = \overline{1, K}, \ m = \overline{1, M}.$$

В формуле (3) величина **s** – это переменная состояния системы , **p** – вектор параметров. С отображением (3) ассоциируем траекторию системы в пространстве $S \times K$ в форме последовательности $\{s_k\}_{k=1}^K$.

Введём в рассмотрение основное преобразование символического CTQ-анализа [17]:

(4)
$$\left\{ \mathbf{s}_{k-1}^{(n)}, \, \mathbf{s}_{k}^{(n)}, \, \mathbf{s}_{k+1}^{(n)} \right\} \Rightarrow T_{k}^{\alpha\varphi}|_{n}, \quad T_{k}^{\alpha\varphi} = \left[T_{k}^{\alpha\varphi}|_{1} \, \dots \, T_{k}^{\alpha\varphi}|_{N}\right], \quad \{T_{k}^{\alpha\varphi}\}_{k=1}^{K},$$

где $T^{\alpha \varphi}|_n$ – символ Т-алфавита:

(5) $T_{a}^{\alpha\varphi} = \{ \text{TO}, \text{T1}, \text{T2}, \text{T3N}, \text{T3P}, \text{T4N}, \text{T4P}, \text{T5N}, \text{T5P}, \text{T6}, \text{T7}, \text{T8N}, \text{T8P} \}.$

Геометрия символов из множества $T_o^{\alpha\varphi}$ показана на рисунке 1. Также дополнительно определим $Q^{\alpha\varphi}|_n$ – символ Q-алфавита $(Q_o^{\alpha\varphi} \ni Q^{\alpha\varphi}|_n)$:

(6)
$$Q_k^{\alpha\varphi}|_n \equiv T_k^{\alpha\varphi}|_n \to T_{k+1}^{\alpha\varphi}|_n, \quad Q_k^{\alpha\varphi} = [Q_k^{\alpha\varphi}|_1 \dots Q_k^{\alpha\varphi}|_N], \quad \{Q_k^{\alpha\varphi}\}_{k=1}^K.$$

Все корректные символы из множества $\mathbf{Q}_o^{\alpha\varphi}$ показаны на рисунке 2 (символы представлены в форме перехода $T_k^{\alpha\varphi}|_n \to T_{k+1}^{\alpha\varphi}|_n$).

Рис. 1. Геометрия символов Т-алфавита.

Рис. 2. Граф Γ_o^{TQ} .

В работе автора [20] введён в рассмотрение символический TQ-образ последовательности $\{\mathbf{s}_k\}_{k=1}^K$. Этот образ определён в форме направленного графа:

(7)
$$\Gamma^{TQ}|_n = \langle \mathbf{V}^{\Gamma}|_n, \, \mathbf{E}^{\Gamma}|_n \rangle, \quad \Gamma^{TQ} = \left[\Gamma^{TQ}|_1 \, \dots \, \Gamma^{TQ}|_N\right],$$

где $V^{\Gamma}|_{n} \subseteq T_{o}^{\alpha\varphi}$ – вершины $\Gamma^{TQ}|_{n}$ и $E^{\Gamma}|_{n} \subseteq Q_{o}^{\alpha\varphi}$ – рёбра $\Gamma^{TQ}|_{n}$. Граф $\Gamma^{TQ}|_{n}$ соответствующий полным алфавитам $T_{o}^{\alpha\varphi}$ и $Q_{o}^{\alpha\varphi}$ определим как Γ_{o}^{TQ} (см. рисунок 2).

Граф (7) возможно разметить и взвесить через частоты появления в последовательности $\{\mathbf{s}_k^{(n)}\}_{k=1}^K$ символов *:

(8)
$$\Delta^*|_n = \frac{|\mathbf{M}^*|_n|}{\left|\bigcup_* \mathbf{M}^*|_n\right|}, \quad 0 \leqslant \Delta^*|_n \leqslant 1,$$

здесь $|\circ|$ – мощность множества, * – некий символ, из которого состоит мультимножество $M^*|_n$:

(9a) $\Delta^{T}|_{n}: \qquad \qquad \mathbf{M}^{*}|_{n} \ni T_{k}^{\alpha\varphi}|_{n}: T_{k}^{\alpha\varphi}|_{n} \backslash \mathbf{T} = *, \ * \in \mathbf{T}_{o}^{\alpha\varphi} \backslash \mathbf{T},$

(96)
$$\Delta^{Q}|_{n}: \qquad \qquad \mathbf{M}^{*}|_{n} \ni Q_{k}^{\alpha\varphi}|_{n}: Q_{k}^{\alpha\varphi}|_{n} \backslash \mathbf{Q} = *, \ * \in \mathbf{Q}_{o}^{\alpha\varphi} \backslash \mathbf{Q}$$

Отметим, что вычисление величин (9a) и (9б) позволяет количественно оценивать различные свойства формы траектории последовательности $\{\mathbf{s}_k\}_{k=1}^K$ в пространстве S × K.

3. Меры сложности

Подход к исчислению сложности многомерных дискретных отображений и последовательностей, представленный в настоящей статье, неформально определяется через следующее высказывание: более сложный динамический процесс, имеет более сложную форму траектории в пространстве S × K. Далее это высказывание представлено в формализованном виде.

Для начала каждому из символов $T^{\alpha\varphi}|_n$ и $Q^{\alpha\varphi}|_n$ поставим в соответствие числовое значение сложности – так называемую удельную сложность символа: $C^T|_n$ и $C^Q|_n$.

Удельные сложности для символов $T^{\alpha\varphi}|_n$ определим исходя из их геометрии. Величины $C^T|_n$ приведены в таблице 1.

Таблица 1. Удельные сложности символов $T^{\alpha \varphi}|_n$, (* = N, P).

$T^{\alpha\varphi} _n$	TO	T1, T2	T4*, T8*	T3*, T5*	T6, T7
$C^T _n$	1	2	4	5	6

Сложность символа $Q_k^{\alpha\varphi}|_n$ определим на основе расстояния между $T_k^{\alpha\varphi}|_n$ и $T_{k+1}^{\alpha\varphi}|_n$:

(10)
$$C^{Q}|_{n} = \mathrm{d}_{\mathrm{T}}\left(T_{k}^{\alpha\varphi}|_{n}, T_{k+1}^{\alpha\varphi}|_{n}\right) + 1.$$

Мера $d_T(\cdot, \cdot)$ – есть количество ребёр на кратчайшем пути между двумя вершинами в графе D_T (см. рисунок 3).

Рис. 3. Граф D_T отвечает переходам между символами $T^{\alpha\varphi}|_n$ для k-го отсчёта подпоследовательности $\left\{s_{k-1}^{(n)}, s_k^{(n)}, s_{k+1}^{(n)}\right\}$, при её различных непрерывных деформациях [21].

Сложность хаотических последовательностей, в рамках излагаемого подхода, будем оценивать по мерам сложности графа $\Gamma^{TQ}|_n$. Учитывая, что граф взвешенный и размеченный, меры определим как топологические, так и метрические. С учётом того, что каждому из символов $T^{\alpha\varphi}|_n$ и $Q^{\alpha\varphi}|_n$ (фактически вершинам и рёбрам графа) приписана удельная сложность, введём в рассмотрение вырожденную и взвешенную меры сложности. Ниже каждую из мер рассмотрим подробнее.

3.1. Вырожденные меры сложности

Вырожденные меры сложности оперируют исключительно свойствами графа $\Gamma^{TQ}|_n$. При этом удельные сложности символов $T^{\alpha\varphi}|_n$ и $Q^{\alpha\varphi}|_n$ формально считаются равными единице. Вырожденные топологическую и метрическую меры сложности запишем в виде:

(11a)
$$\mathbf{C}_{\Gamma}^{dt}|_{n} = \begin{bmatrix} C_{\Gamma T}^{dt}|_{n}, \ C_{\Gamma Q}^{dt}|_{n} \end{bmatrix}^{\mathrm{T}}, \quad C_{\Gamma \circ}^{dt}|_{n} = \sum_{*} \operatorname{sign} \Delta^{*}|_{n},$$

(116) $\mathbf{C}_{\Gamma}^{dm}|_{n} = \begin{bmatrix} C_{\Gamma T}^{dm}|_{n}, \ C_{\Gamma Q}^{dm}|_{n} \end{bmatrix}^{\mathrm{T}}, \quad C_{\Gamma \circ}^{dm}|_{n} = \exp H^{\Gamma \circ}|_{n},$

где: $* \in T_o^{\alpha\varphi}$: $\circ = T$, $* \in Q_o^{\alpha\varphi}$: $\circ = Q$, $H^{\Gamma\circ}|_n$ – энтропия Больцмана-Шеннона компонент $V^{\Gamma}|_n$ и $E^{\Gamma}|_n$ графа $\Gamma^{TQ}|_n$:

$$H^{\Gamma \circ}|_n = -\sum_* \Delta^*|_n \ln \Delta^*|_n.$$

Из свойств вырожденных мер сложности следует ряд нестрогих неравенств:

$$1 \leqslant C_{\Gamma \circ}^{dt}|_{n}, \quad 1 \leqslant C_{\Gamma \circ}^{dm}|_{n}, \quad C_{\Gamma \circ}^{dm}|_{n} \leqslant C_{\Gamma \circ}^{dt}|_{n}.$$

3.2. Взвешенные меры сложности

Взвешенные меры сложности есть расширение над вырожденными мерами. То есть взвешенные меры в свой состав включают также и удельные сложности символов $T^{\alpha\varphi}|_n$ и $Q^{\alpha\varphi}|_n$. Взвешенные топологическую и метрическую меры запишем в виде:

(12a)
$$\mathbf{C}_{\Gamma}^{wt}|_{n} = \begin{bmatrix} C_{\Gamma T}^{wt}|_{n}, \ C_{\Gamma Q}^{wt}|_{n} \end{bmatrix}^{\mathrm{T}}, \quad C_{\Gamma \circ}^{wt}|_{n} = \sum_{*} C^{*}|_{n} \operatorname{sign} \Delta^{*}|_{n},$$

(126)
$$\mathbf{C}_{\Gamma}^{wm}|_{n} = \begin{bmatrix} C_{\Gamma T}^{wm}|_{n}, C_{\Gamma Q}^{dm}|_{n} \end{bmatrix}^{\mathrm{T}}, \quad C_{\Gamma \circ}^{wm}|_{n} = \begin{cases} 0 & C_{\Gamma \circ}^{wt}|_{n} = 0, \\ \exp \tilde{H}^{\Gamma \circ}|_{n} & \text{otherwise.} \end{cases},$$

where: $* \in T_o^{\alpha\varphi} : \circ = T, * \in Q_o^{\alpha\varphi} : \circ = Q, \tilde{H}^{\Gamma\circ}|_n$ – weighted Renyi entropy of graph $\Gamma^{TQ}|_n$:

$$\tilde{H}^{\Gamma\circ}|_{n} = \frac{1}{1-q} \ln \sum_{*} C^{*}|_{n} \left(\tilde{\Delta}^{*}|_{n}\right)^{q},$$
$$\tilde{\Delta}^{*}|_{n} = \frac{\hat{\Delta}^{*}|_{n}}{\sum_{*} C^{*}|_{n} \hat{\Delta}^{*}|_{n}}, \quad \hat{\Delta}^{*}|_{n} = \frac{(\Delta^{*}|_{n})^{b_{\circ}}}{C^{*}|_{n}}, \quad b_{\circ} = \frac{\ln C_{\Gamma\circ}^{wt}|_{n} - \ln C^{*}|_{n}}{\ln C_{\Gamma\circ}^{dt}|_{n}}.$$

Свободный (управляющий) параметр в $\tilde{H}^{\Gamma \circ}|_n$ в первом приближении (по аналогии с работой [11]) запишем в форме:

$$q \propto 1 + \ln \frac{\max C^*|_n}{\min C^*|_n}.$$

Отметим, что в настоящий момент ведутся исследования по строгой формализации параметра *q*.

Из свойств взвешенных мер сложности следует ряд нестрогих неравенств:

$$1 \leqslant C_{\Gamma \circ}^{wt}|_n, \quad 1 \leqslant C_{\Gamma \circ}^{wm}|_n, \quad C_{\Gamma \circ}^{wm}|_n \leqslant C_{\Gamma \circ}^{wt}|_n.$$

4. Примеры

Продемонстрируем возможности разработанных мер сложности хаотических дискретных последовательностей на двух примерах: (i) – осциллятор Рёсслера, раздел 4.1. и (ii) – финансовые временные ряды, раздел 4.2.. Причём первый пример – это эталонный, хорошо изученный объект нелинейной динамики. Второй пример – имеет прикладную ценность в разрезе исследований по макроэкономике и стохастической финансовой математике.

4.1. Осциллятор Рёсслера

Исследуем численно TQ-сложность траекторий системы Рёсслера [22], для случая ленточного $(r = r_b)$ и винтового $(r = r_s)$ хаоса:

(13)
$$\dot{x} = -y - z, \quad \dot{y} = x + py, \quad \dot{z} = q + z(x - r), \quad p = 0.2, \quad q = 0.1,$$

band-type xaoc: $r = r_b = 4.4, \quad \text{screw-type xaoc: } r = r_s = 12.$

Фазовые портреты этих хаотических режимов приведены на рисунке 4.

Рис. 4. Фазовые портреты осциллятора Рёсслера: (a) – ленточный хаос; (b) – винтовой хаос.

Известно [22, 23], что режим винтового хаоса более сложен, нежели режим ленточного хаоса, в том числе и из-за присутствия в первом – гетероклинических орбит Шильникова [24]. Сверим данную информацию с результатами численного эксперимента на основе мер сложности введённых в разделе 3.. Описание численного эксперимента. Метод интегрирования: Рунге-Кутта 5-го порядка, с фиксированным шагом. Период интегрирования: $T = [0, 8 \times 10^3]$. Шаг по времени: $\Delta t = 10^{-2}$. Количество траекторий: $N = 10^4$ (для каждого режима: $r = r_b$ и $r = r_s$). Начальные условия:

$$r = r_b : x_0 = \xi_1 \in [-7, 7], y_0 = \xi_2 \in [-7, 7], z_0 = \xi_3 \in [0, 15],$$

$$r = r_s : x_0 = \xi_1 \in [-26, 26], y_0 = \xi_2 \in [-26, 26], z_0 = \xi_3 \in [0, 100],$$

где ξ_{1-3} – некоррелированные псевдослучайные переменные с равномерным распределением. Аналитический период: $T' = [7, 8] \times 10^3$. Количество отсчётов в последовательности $\{T_k^{\alpha\varphi}|_n\}_{k=1}^K$: $K = 10^5$. Границы интервалов вычисляемых величин оценивались по вероятности: $\beta = 0.9999$.

Результаты расчёта сложности по формулам раздела 3. таковы. Топологическая сложность обоих хаотических режимов по символам $T^{\alpha\varphi}|_n$ – идентична: $C_{\Gamma T}^{dt}|_{xyz} = 6$, $C_{\Gamma T}^{wt}|_{xyz} = 32$, а по символам $Q^{\alpha\varphi}|_n$ – различна, см. рисунок 5. Метрическая сложность хаотических режимов ($r = r_b$ and $r = r_s$) различается, как по символам $T^{\alpha\varphi}|_n$, так и по символам $Q^{\alpha\varphi}|_n$, см. рисунок 6.

Рис. 5. Топологическая сложность траекторий осциллятора Рёсслера в части символов $Q^{\alpha\varphi}|_n$: (a) – Вырожденная; (b) – Взвешенная; (c) – распределение вероятностей различных значений сложности $C_{\Gamma Q}^{dt}|_n$.

Из рисунков 5 и 6 видно, что все траектории в режиме band-type chaos $(r = r_b)$ имеют "однородную" сложность, тогда как в режиме screw-type chaos $(r = r_s)$ траектории распадаются на несколько кластеров, имеющих различную сложность в части символов $Q^{\alpha\varphi}|_n$: 7 кластеров в случае топологических мер (как вырожденных, так и взвешенных); 3 кластера в случае взвешенной метрической меры. При этом соответствующие кластеры не являются равновероятными, что хорошо видно из рисунков 5с и 6е. Так, вероятность принадлежности траектории кластерам B, C и D (см. рисунки 6d и е) оценивается на уровне: 0.0043, 0.7934 и 0.2023, соответственно. Предварительный анализ не выявил связь между принадлежностью траектории указанным кластерам и начальными условиями при интегрировании системы (4.1.). В настоящий момент проводятся дополнительные исследования по установлению причин разделения траекторий на кластеры B, C и D.

Из полученных результатов следует однозначный вывод: screw-type xaoc сложнее нежели band-type xaoc. Этот вывод находится в полном согласии с теоретическими

Рис. 6. Метрическая сложность траекторий осциллятора Рёсслера: (a) и (b) – Вырожденная; (c) и (d) – Взвешенная; (e) – плотность распределения траекторий по различным значениям сложности $C_{\Gamma Q}^{wm}|_{n}$ (в логарифмическом масштабе).

результатами [22,23]. Таким образом пример с осциллятором Рёсслера демонстрирует корректность и информативность разработанных мер сложности.

4.2. Временные ряды финансовых индикаторов

В настоящей работе также исследована сложность временных рядов курсов обмена некоторых мировых валют (Доллар США [USD], Евро [EUR], Японская йена [JPH], Швейцарский франк[CHF], и Британский фунт [GBP]) по отношению к Рублю РФ [RUB] за период с 01.01.1999 г. по 31.03.2013 г. Исходные данные взяты с официального web-сайта Центрального банка России (Банк России, Курс обмена валют, http://www.cbr.ru/currency base/dynamics.aspx). Длина временных рядов: K = 3 545 отсчётов. Исходные временные ряды показаны на рисунке 7.

Результаты расчёта сложности по формулам раздела 3. приведены на рисунке 8.

Из результатов анализа видно, что пара USD/RUB существенно превосходит по сложности временного ряда остальные валютные пары. Из этого можно сделать два предварительных вывода: (i) динамика формирования валютной пары USD/RUB существенно отличается от таковой для других валютных пар (возможно даже на уровне финансово-экономических механизмов); (ii) временной ряд пары USD/RUB более сложен для предсказания [4], нежели временные ряды других пар. Эти выводы в принципе находятся в хорошем согласии и дополняют ранее полученные результаты [25].

Рис. 7. Временные ряды курсов обмена валют.

5. Заключение

Итак, в представленной работе предложен новый подход к количественному оцениванию сложности многомерных хаотических последовательностей в аспекте форм их траекторий в пространстве S × K, основанный на исследовании их структурных свойств. Данный подход свободен от большинства недостатков существующих способов оценивания сложности динамических процессов и основывается на методе символического CTQ-анализа.

Проведённый численный эксперимент (исследование осциллятора Рёсслера в двух хаотических режимах) показал адекватность предложенных мер сложности: винтовой хаос более сложен нежели ленточный. Кроме того, данный эксперимент продемонстрировал информативность подхода по обнаружению факта перестройки структуры аттракторов (хаос различен по сложности). Причём эта перестройка также оценивается в виде числовых характеристик. При этом обнаружено, что траектории осциллятора Рёсслера в режиме винтового хаоса расслаиваются на явно выраженные кластеры по величине сложности. Предварительный анализ показал, что начальные условия при интегрировании не определяют принадлежность траектории тому или иному кластеру. В настоящий момент проводятся дополнительные исследования для установления причин и механизмов кластеризации траекторий.

Тем не менее, необходимо отметить, что предложенные меры сложности оперируют частотами появления символов, и при этом игнорируют порядок их следования. За счёт этой особенности меры не различают процессы отличающиеся только уровнем перемешивания символов. В настоящий момент проводятся дополнительные исследования по устранению данного ограничения и расширению аналитических возможностей предложенного подхода к оцениванию сложности дискретных последовательностей.

Рис. 8. Сложность временных рядов курсов обмена валют. Метрическая мера сложности: (*a*) – Вырожденная; (*b*) – Взвешенная.

Список литературы

- 1. Complexity, Science and Society, eds. J. Bogg, R. Geyer, Radcliffe Publishing, 2007.
- Measurements of Complexity: Proceedings of the Conference. Rome, September 30 October 2, 1987. Eds. L. Petiti, A. Vulpiari // Lecture Notes in Physics. 1988. Vol. 314.
- Badii R., Politi A. Complexity: Hierarchical Structures and Scaling in Physics. Cambridge University Press, Cambridge, 1997.
- Кравцов Ю.А. Случайность, детерминированность, предсказуемость // УФН. 1989. Том 158. Вып. 5. С. 93-122.
- 5. Леонтович М.А. Введение в термодинамику. Статистическая физика. М.: Наука, 1983.
- Хартли Р. Передача информации, в сборнике «Теория информации и ее приложения». Под ред. А.А. Харкевича, Физматгиз, 1959.
- 7. Шеннон К. Работы по теории информации и кибернетике. Пер. с англ. Под ред. Р.Л. Добрушина и О.Б. Лупанова. М.: ИЛ, 1963.
- Корнфельд И.П., Синай Я.Г. Энтропийная теория динамических систем // Совр. пробл. мат. Фундам. направления. 1985. Т. 2. ВИНИТИ, М., С. 44-70.
- 9. Кузнецов С.П. Динамический хаос. М.: Изд-во физ.-мат. лит., 2001.
- 10. Климонтович Ю.Л. Турбулентное движение и структура хаоса. М.: Наука, 1990.
- Башкиров А.Г. Энтропия Реньи как статистическая энтропия для сложных систем // ТМФ. 2006. Том 149. Вып. 2. С. 299-317.
- Колмогоров А.Н. Комбинаторные основания теории информации и исчисления вероятностей // Успехи мат. наук. 1983. Том 38. Вып. 4. С. 27-36.
- 13. Дарховский В.С., Каплан А.Я., Шишкин С.Л. О подходе к оценке сложности кривых (на примере электроэнцефалограммы человека) // Автомат. и телемех. 2002. № 3. С. 134-140.
- 14. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Радио и связь, 1986.
- Arnold V.I. Complexity of finite sequences of zeros and ones and geometry of finite spaces of functions // Funct. Analysis and Other Math. 2006. Vol. 1. Issue 1. pp. 1-15.
- Attneave F and Arnoult M.D. The quantitative study of shape and pattern perception // Psychological Bulletin. 1956. Vol. 53. Issue 6. pp. 452-471.
- 17. Макаренко А.В. Символический анализ в пространстве «скорость-кривизна» структуры хаоса в режиме синхронизации // Письма в ЖТФ. 2012. Том 38. Вып. 4. С. 1-9.

- Макаренко А.В. Мера синхронности многомерных хаотических последовательностей на основе их символьного представления в Т-алфавите // Письма в ЖТФ. 2012. Том 38. Вып. 17, С. 53-60.
- Makarenko A.V. Estimation complexity of chaotic oscillations in aspect of the shape of their trajectories // Book of Abstracts on XXV IUPAP Conf. on Computational Physics. 2013. Moscow: Department of Phys. Sci. of RAS. pp. 52.
- Макаренко А.В. Символический анализ в пространстве «скорость-кривизна» многомерных динамических процессов // Ж. вычисл. матем. и матем. физ. 2012. Том 52. Вып. 7. С. 1248-1260.
- 21. Макаренко А.В. Расстояние между символами Т-алфавита и свойства дискретных динамических систем // Международная конференция «Анализ и Особенности» / Тезисы докладов. Москва, Матем. Ин-т им. В.А. Стеклова, 2012, С. 78-79.
- 22. Rossler O.E. Chaos in abstract kinetics: Two prototypes // Bulletin of Math. Biology. 1977. Vol. 39. Issue 2. pp. 275-289.
- 23. Gilmore R. and Lefranc M. The topology of chaos. Wiley-Interscience, 2002.
- 24. Shilnikov L.P., Shilnikov A., Turaev D. and Chua L. Methods of Qualitative Theory in Nonlinear Dynamics. Part II. World Sci, 2001.
- 25. Makarenko A.V. Symbolic CTQ-analysis a new method for studying of financial indicators // International Conference "Advanced Finance and Stochastics"/ Book of Abstracts — Moscow, 24-28 June 2013, Steklov Mathematical Institute, pp. 63-64.